Limit with shifted harmonic numbers.

https://www.linkedin.com/feed/update/urn:li:activity:6576008322640683009 Let $a \in (0,\infty)$. Calculate $\lim_{n \to \infty} \left(e^{\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n}} - e^{\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1}} \right).$

Solution by Arkady Alt, San Jose , California, USA.

First we have to do some preparations.

For any real a > 0 let $h_n(a) := \sum_{k=1}^n \frac{1}{a+k}$, $n \in \mathbb{N}$. Note that in particular for a = 1 we have $h_n(1) = H_{n+1}$, where $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ is *n*-th harmonic number. Consider two sequences $l_n := h_n(a) - \ln(a + n + 1)$ and $u_n := h_n(a) - \ln(a + n)$. Note that $l_n < u_n, \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} (u_n - l_n) = \lim_{n \to \infty} \ln\left(1 + \frac{1}{a+n}\right) = 0.$ Also note that $l_n < l_{n+1}, \forall n \in \mathbb{N}$ and $u_n > u_{n+1}, \forall n \in \mathbb{N}$. Indeed, since $\frac{1}{x+1} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{x}$ for any x > 0 then for any $n \in \mathbb{N}$ holds $l_{n+1} - l_n = \frac{1}{a+n+1} - \ln\left(1 + \frac{1}{a+n+1}\right) > 0$ and $u_n - u_{n+1} = \ln\left(1 + \frac{1}{a+n}\right) - \frac{1}{a+n+1} > 0.$ Since $l_1 \leq l_n < u_n \leq u_1$ then convergent both sequences (l_n) and (u_n) and $\lim_{n \to \infty} (u_n - l_n) = 0$ implies that both have the same limit. Let $\gamma(a) := \lim_{n \to \infty} (h_n(a) - \ln(a + n + 1)) = \lim_{n \to \infty} (h_n(a) - \ln(a + n))$. Since (l_n) strictly increase and (u_n) strictly decrease then $h_n(a) - \ln(a + n + 1) < \gamma(a) < h_n(a) - \ln(a + n) \Leftrightarrow$ $\ln(a+n) + \gamma(a) < h_n(a) < \ln(a+n+1) + \gamma(a), \forall n \in \mathbb{N}.$ Noting that $h_{n+1}(a) = h_n(a+1) + \frac{1}{a}$, $\gamma(a) = \lim_{n \to \infty} (h_{n+1}(a) - \ln(a+n+1))$ and $\gamma(a+1) = \lim_{n \to \infty} (h_n(a+1) - \ln(a+1+n))$ we obtain $\gamma(a) = \gamma(a+1) + \frac{1}{a}$. Since $\lim_{n \to \infty} (H_n - \ln n) = \lim_{n \to \infty} (H_n - \ln(n+1)) = \gamma$, where $\gamma \approx 0.5772$ is Euler's constant then $\gamma(1) = \lim_{n \to \infty} (h_n(1) - \ln(n+2)) = \lim_{n \to \infty} (H_{n+1} - \ln(n+2)) = \gamma$ Thus $\gamma(a)$ completely defined by functional equation $\gamma(a+1) = \gamma(a) - \frac{1}{a}, \forall a > 0$ and $\gamma(1) = \gamma$. Since $-\gamma(a+1) = -\gamma(a) + \frac{1}{a}$ and digamma function $\psi(a)$ can be defined by functional equation $\psi(a+1) = \psi(a) + \frac{1}{a}$ and $\psi(1) = -\gamma$ then $\gamma(a) = -\psi(a)$. Now we ready to solve the problem. Let $L(a) := \lim_{n \to \infty} (e^{h_n(a)} - e^{h_{n-1}(a)})$. We have $L(a) = \lim_{n \to \infty} e^{h_{n-1}(a)} \left(e^{\frac{1}{a+n}} - 1 \right) =$ $\lim_{n \to \infty} \frac{e^{h_{n-1}(a)}}{a+n} \cdot \frac{e^{\frac{1}{a+n}} - 1}{\frac{1}{a+n}} = \lim_{n \to \infty} \frac{e^{h_{n-1}(a)}}{a+n}$. Since $\ln(a+n-1) + \gamma(a) < h_{n-1}(a) < \ln(a+n) + \gamma(a) \Leftrightarrow$ $\frac{a+n-1}{a+n}e^{\gamma(a)} < \frac{e^{h_{n-1}(a)}}{a+n} < e^{\gamma(a)} \text{ then by Squeeze Principle}$ $L(a) = e^{\gamma(a)} = e^{-\psi(a)}$